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We examine the application of a Liapunov function in the form of a quadratic 
form with coefficients which are time functions, to investigate the stability of 
the permanent rotations of a rigid body with one point fastened on a moving 

base. When investigating the stability of the permanent rotations of a rigid body 
with one fixed point in a potential force field, as the Liapunov function we select, 
as a rule, the bundle of integrals of the equations of perturbed motion, starting 

with terms of second order relative to the perturbations (for example, see Cl]). 
The derivative of this function relative to the equations of perturbed motion 

equals zero. therefore, the positive definiteness of the quadratic form of the func- 
tion indicated ensures the stability of the unperturbed motion. However, if the 
fixed point of the rigid body is located on a moving base (performing a specified 
motion), then the construction of the Liapunov function in the form of a bundle 
of first integrals of the equations of motion is impossible because of the absence 
of the energy integral. Therefore, it is necessary to try to find other means of 

constructing the Liapunov function ; we examine below one of the methods for 
such a conseuction. 

1. We consider the function 

l/ (t, Xl, X2, . . . . X,) = ZOij (t) XiXj (1.1) 

given in the region 

t > t, > 0, 1 zs 1 < h (s = 1, 2 ,...) n) 

where 2, and h are constants. Let the coefficients of quadratic form (1.1) be 

(1.2) 

Here cij are constant system parameters and f (t) is a positive periodic time function 
with period E < liti, admitting of discontinuities of the first kind at points t, = t, + 
me (m = i, 2, . ..). In the interval t,,,_i< t< tm the graph of function f (t) is a straight 

line parallel to the bisector of the second and fourth quadrants. It is obvious that the 
function f (t) introduced and the coefficients of quadratic form (1.1) possess, everywhere 
except at the points t,, the properties 

i - e < f (Q < 1, f’ (4 = 1 

(1 - E) 1 Ci] ( < 1 flij (t) 1 < Cij, ai]' (t) = -Cij 

Function (1.1) vanishes at the origin of the space of xl, x2,..., x, and takes only posi- 
tive values in a neighborhood of the origin if there exists a positive-definite quadratic 
form with constant coefficients 

w (X,, 22, *..I m) = (1 - 2&) ZCij.ZiXj 

i. e. when the inequalities 
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cs = I I c11 cls >‘I (s -= 1, 2, ., II) 
C 

sl css 
(2.3) 

are fulfilled. Indeed, in this case the function 

I’ - Ii’ =1 2 b ij (t) “<“i, bij (t) = Clj [f (t) - (1 -WI 

is a quadratic form all of whose diagonal minors 

B, = (f (t) - (1 - 2 E)lS c, (1.4) 

are positive time functions for all t > t, > 0 since the time function within the brack- 
ets in expression (1.4) is contained between F and 2~ and, consequently, is a positive 
function, while on the basis of conditions (1.3) the constants C, > 0. Thus, the relation 

v (t, 51, 22, . . . . x,) > w (51’ x2, . ...%) > 0 (I.51 

holds under conditions (1.3) i.e. in region (1.2) the form (1.1) is a positive-definite 
function depending on t . 

By arguing analogously we can show that function IF satisfies &he condition I’ < 
IV,, where W1 is a positive-definite quadratic form with constant coefficients. There- 
fore, we can conclude that the one-parameter family of cycles I’ -= c > 0 in the space 

of variables .cS is contained between two constant cycles w I= c and W, z c. 
Let us now consider the differential equations of a perturbed motion, of the form 

Z$’ = x, (& %I, .L‘P, ..‘? S?J 

Let the total time derivative of function I:, taken relative to these equations, i. e. the 

expression 1” = a\. / i,t + r, X$1 / dz, 

existing for all t except the points of discontinuity of function f (t) and predetermined 

at these points, be a negative function or be identically zero. Then the unperturbed 
motion is Liapunov-stable, i. e. the trajectory of the motion of the representative point 

starting from the positions ZZJ = X.X,? (to) < h, does not go outside of the sphere 

X.r? = 6, where S is a positive number. h = h (6). As a matter of fact it is obvious 

that on any sphere Z ~~2 = 6 in region (1.2) of the space of variables zS there holds the 

condition w(z,, x2, . . . . x,) > 1, where 1 is the greatest lower bound of the function IV 

on this sphere. Then on the basis of inequality (1.5) the condition I/ (t, x1, . . . , x7,) > 1 
also is fulfilled on the sphere 2.~~2 .= 6 . 

On the other hand we can also find points I~,, of the space of variables zS1 located in 
the region EX,;~ < h < 8, such that the condition 1’ (to, JT,“, Zig,..., ~~0) < 1 is fulfilled 

(this is possible since V (to, 0, 0, . . . , 0) == 0). According to the condition 1” -< 0 we have 

V (t, Xl, .ce, . . . . 2,) < v (10, %I), FmI ..., xno) < 1, i.e. it is impossible for the represent- 
ative point (x1, x2. . . . . x,,) to hit onto the sphere ZX,~ =- 6. Thus the Liapunov stability 

theorem is true for the function (1.1) with the stated properties and it can be taken as 

the Liapunov function [Z]. 

2. With the aid of Liapunov function (1.1) we investigate the stability of the rotary 
motion of a Lagrange gyroscope (spinning top) with one point fastened to a moving base 
and located in a central Newtonian force field. Let us consider a rigid body whose prin- 
cipal moments of inertia are A B # C, the center of mass is located on the OL -axis 
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of dynamic symmetry: zc = yc = 0, zc = z,, > 0, in a central Newtonian force field 
with the force functions 

u = --mg (z,yi + yoYz + zoY3) - p (AY1’ -I BYa2 + CY,~) / 2 

Here 50~ Yo? zo are the coordinates of the center of mass in the Ozyz-axes directed 

along the principal axes of the ellipsoid of inertia of the rigid body, ~1 is a constant 
depending on the gravitational constant and on the body’s distance from the attracting 
center , ~1, yz, y3 are the direction cosines of the z I -axis (connecting the attracting 

center with the center of the ellipsoid of inertia of the rigid body) in the OZYZ coordi- 
nate system. 

Suppose that the center 0 of the ellipsoid of inertia performs a harmonic oscillation 
along the z,-axis by the law 

Z 1o = a sin kt, a,k>O 

Then the equations of motion of the rigid body, referred to the OXYZ system, have the 
form p’ = (1 - Y) qr + a (t) yz - lL (1 - Y) yzy31 Y!’ = rY3 - qY3 

q’ = -(I - Y) pr - a (t) Yl $- I_1 (1 - Y) Y1Y31 YL’ = PY3 - Vi (2.1) 

r’ = 0, y3’ = 4Yl - PY3 

Here P, 4. r are the projections of the instanteneous angular velocity of the rigid body 
onto the x, y, z axes, respectively, v = C / A is a constant, a (t) =T~z, (g- ak2 sin kt) /A 

is a known time function. Equation (2.3) admits of a particular solution 

p = q = 0, r = ro, y1 = y3 = 0, Y3 = (2.2) 

which corresponds to the rotation of the rigid body with angular velocity F,, around the 

axis of dynamic symmetry directed along the axis connecting the attracting center with 
the center of the ellipsoid of inertia. 

Let US investigate the stability of the unperturbed motion (2.2) relative to the varia- 

bles ~9 q> ~7 ~1, yz, y3. In the perturbed motion we set 

P = ~1, q = x2, r = r. + x3, y1 = ?:l, 72 = ~1, y3 = i + y3 (2.3) 

Then the equations of perturbed motion take the form 

Zl’ = (1 - Y) (r. i- z3) 12 + a (t) y3 - p (1 - v) (1 + 5.3) y2, x2' = -(i - v) (r. + 

r3) 21 - a (4 y1 + p (1 - v).(l + y3)y1: cr3' = 0, w’ = (r. + 23) y2 - x2 (1 + y3) 

y..' = XI (1 + y3) - (r. + x3) yl. y3' = nyl - xly2 (2.4) 

We obtain sufficient conditions for the stability of motion (2.2) by examining a Liapu- 
nov function of the type of form (1. l), 

v = f (kt) 1x12 - vroxlyl + [v2ro” / 2 - a (1) + p (1 - v)] y12 $ x22 - vrox2y, + 

[Y2r02 / 2 - a (t) + p (1 - Y)] y$ + v223? - v3ro x3y3 + [v2r02 / 2 - a (t)] yij(2.5) 

In the given case, under conditions (2.6) or (2.7) 

A > C, C3ro3 - 4mzoA (g + ak2) - 4 u (A - C) > 0 (2.6) 

A < C, C2r03 - 4mzoA (g + ak2) > 6 (2.7) 

the function (2.5) is a positive-definite quadratic form in the variables ZC~, yir which 
satisfies condition (1.3). The derivative of function (2.5) by virtue of the equations of 
perturbed motion (2.4) is the quadratic form 
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- V’ / k = ~~2 - vr,,qy, _t [v2r,,’ / 2 - a (t) + I-1 (1 - v) + 

a’ (t) f (kt) / k] ~1% + x23 - z’rox2yz + [Y2ri’ i 2 - u (t) $- 

p (1 - Y) + a’ (t) f (kt) /k] yiZ _1- V”Z,” - Y2r&y3 -t 

[v2roZ/ 2 - a (t) + a’ (t) f (kt) / k] I/: 

which takes negative values under the conditions 

d > C, C2r02 - 4mz,A (g + 2ak2) - 411 (A - C) > 0 (2.8) 

A < C, C2r02 - 4 mz,A (g + 2 ak2) > 0 (2.9) 

It is evident that when conditions (2.9) or (2. 8) are fulfilled, conditions (2.6) or (2.7) 
are fulfilled. In other words, inequalities (2.8) or (2.9) are sufficient conditions for the 
stability of the unperturbed motion (2.2). 

In the case a = 0 (k = 0) inequality (2.9) turns into the Majewski stability con- 

dition well known in the literature [3]. The questionofhow close conditions (2.8) or (2.9) 
are to the necessary conditions for the stability of motion (2.2) is answered by an exam- 
ination of the function 

v, = qy, - “%Yl (2.10) 

Indeed, in the region TT1 > 0 the derivative of function (2 .10) by virtue of the eqllarions 
of perturbed motion (2.4) has the form [S] 

Vl * zz rely2 +xgJJ’ - x.z’y1 - “2Yl * = 212 - vrOqyl -{- [a (t) - p (1 - Y)l y? + XZ” - 

vrox2yZ r ’ [a (t) - p (1 - 41 Y22 

whose sign is the same as the sign of r-1 under the conditions 

A < C, C2ro” - 4mz,A (g - ak2) - 4~ (A - C) < 0 (2.11) 

A > C, C2r,’ - 4mz,A (g - ak2) < 0 (2.12) 

Therefore, inequalities (2.11) or (2.12) are conditions for the instability of the unper- 
turbed motion (2.2) [a]. 
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